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Abstract

Background: Large sample sets of whole genome sequencing with deep coverage are being generated, however
assembling datasets from different sources inevitably introduces batch effects. These batch effects are not well
understood and can be due to changes in the sequencing protocol or bioinformatics tools used to process the
data. No systematic algorithms or heuristics exist to detect and filter batch effects or remove associations impacted
by batch effects in whole genome sequencing data.

Results: We describe key quality metrics, provide a freely available software package to compute them, and
demonstrate that identification of batch effects is aided by principal components analysis of these metrics. To
mitigate batch effects, we developed new site-specific filters that identified and removed variants that falsely
associated with the phenotype due to batch effect. These include filtering based on: a haplotype based genotype
correction, a differential genotype quality test, and removing sites with missing genotype rate greater than 30%
after setting genotypes with quality scores less than 20 to missing. This method removed 96.1% of unconfirmed
genome-wide significant SNP associations and 97.6% of unconfirmed genome-wide significant indel associations.
We performed analyses to demonstrate that: 1) These filters impacted variants known to be disease associated as 2
out of 16 confirmed associations in an AMD candidate SNP analysis were filtered, representing a reduction in power
of 12.5%, 2) In the absence of batch effects, these filters removed only a small proportion of variants across the
genome (type I error rate of 3%), and 3) in an independent dataset, the method removed 90.2% of unconfirmed
genome-wide SNP associations and 89.8% of unconfirmed genome-wide indel associations.

Conclusions: Researchers currently do not have effective tools to identify and mitigate batch effects in whole
genome sequencing data. We developed and validated methods and filters to address this deficiency.
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Background
Recent reductions in the cost of whole genome sequen-
cing [1] (WGS) have paved the way for large-scale se-
quencing projects [2]. The rapid evolution of WGS
technology has been characterized by changes to library
preparation methods, sequencing chemistry, flow cells,
and bioinformatics tools for read alignment and variant
calling. Inevitably, the changes in WGS technology have
resulted in large differences across samples and the
potential for batch effects [3, 4].

Genotyping arrays preceded WGS and were the stand-
ard assay for variant calling and genome-wide associ-
ation studies (GWAS). Batch effects are well studied in
the context of genotyping arrays [5–7] and often can be
addressed using widely adopted quality control (QC)
measures [8]. Standard QC of SNP array data involves
excluding samples with high missingness, testing for dif-
ferences in allelic frequencies between known batches,
removing related individuals, and correcting for popula-
tion structure and possibly batch effects via principal
components analysis (PCA) [8, 9]. QC strategies pro-
posed for exome sequencing (WES) include empirically
derived variant filtering [10] and methods for removing
batch effects in copy number variation calling [11, 12].
These algorithms rely on read depth and either singular
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value decomposition (SVD), principal components ana-
lysis (PCA), or a reference panel to normalize read depth
and remove batch effects [11–13].
Batch effects in WGS come with the additional com-

plexity of interrogating difficult to characterize regions
of the genome, and common approaches such as the
Variant Quality Score Recalibration (VQSR) step in GATK
[14] and processing samples jointly using the GATK
HaplotypeCaller pipeline fail to remove all batch effects.
Factors leading to batch effects are ill-understood and can
arise from multiple sources making it difficult to develop
systematic algorithms to detect and remove batch effects.
The optimal way to address batch effects would be
through up-front study design [15]. For instance, sequen-
cing both cases and controls in each sequencing run
would be optimal [16]. One could then eliminate all calls
crossing genome-wide significance after performing a
GWAS with batch as phenotype. Following these lines,
replication [17] and randomization would also go far in
reducing the impact of batch effects. However, given the
scale and cost required to procure and sequence samples,
optimal study design is often not an option. This is par-
ticularly relevant when working within large consortia
where controls may come from a single source (e.g.
TOPMed [18]) and cases from many disease focused
collections.
Given that no standardized algorithms or heuristics

currently exist to identify or address the issue of batch
effects in WGS, batch effects have generally been han-
dled by adopting stringent QC measures. The Type 2
Diabetes Consortium [19] used a series of filters includ-
ing setting sites with GATK genotype quality less than
20 to missing and eliminating any site with greater than
10 % missingness within each ethnicity, deviation from
HWE, and differential call rate between cases and con-
trols on a dataset that included WGS and WES data.
This filtering eliminated 9.9 % of SNPs and 90.8 % of
indels. Similarly, the UK10K consortium [20] removed
any site found as significant after performing an associ-
ation study with sequencing center as the phenotype.
This, alongside additional QC measures, resulted in
removal of 76.9 % of variants [21]. Removing repetitive
regions of the genome (removes ~53% of the genome)
[22] or using established high confidence regions such as
genome in a bottle (removes ~26% of the genome) [23]
are similarly stringent.
In addition to removing unconfirmed and likely spuri-

ous associations induced by batch effects, researchers
must also determine that a batch effect exists. Identify-
ing a method to detect batch effects that have an impact
on downstream association analyses is crucial as re-
searchers need to know upfront whether WGS datasets
can be combined or if changes in sequencing chemistry
will result in sequences that can no longer be analyzed

together. This has been done with principal compo-
nents analysis [24] for SNP array data or for WES
using various summary metrics of the data (such as
read count, base quality, etc.) [25]. Metrics such as
the percent variants confirmed in 1000 genomes data
[26] can be used to assess WGS data quality. Simi-
larly, transition-transversion ratios (Ti/Tv) are known
to range from 2.0–2.1 in genomic and 3.0–3.3 in ex-
onic regions [14]. Deviations from these values can
indicate poor data quality.
The powerful technique of haplotype inference has

evolved orthogonal to the established approaches to cor-
rect for batch effects [27–29]. Haplotype blocks are used
for applications as diverse as imputation, identifying
positive selection, and estimating population diversity
[30–32]. Haplotype blocks have the potential to aid with
correcting for batch effects as they are used to detect
genotype error [30] and correct for poor genotyping
quality [33].
Large-scale WGS efforts are thriving, however few

guidelines exist for determining whether a dataset has
batch effects and, if so, what methods will reduce their
impact. We address both these deficiencies and intro-
duce new software (R package, genotypeeval, see
Methods for additional details and web link) that can
help identify batch effects. We demonstrate how to iden-
tify a detectable batch effect in WGS data via summary
metrics computed using genotype calls, their quality
values, read depths, and genomic annotations, followed
by a PCA of these metrics. We describe our strategy to
eliminate unconfirmed genome-wide significant associa-
tions (UGAs), which are likely enriched for spurious
associations, induced by batch effects. Our aim was to
develop filters that removed sites impacted by a detect-
able batch effect with high specificity so as not to elim-
inate a large number of variants genome-wide. The
filters we developed do not remove all UGAs im-
pacted by batch effects and come at the cost of a re-
duction in power of 12.5%, however when applied in
conjunction with standard quality control measures
(see Methods) they can substantially mitigate the im-
pact of batch effects.
We recommend the following three-step combination

of filters to reduce UGAs: 1) Use haplotypes to correct
errors in genotypes, then remove associations no longer
achieving genome-wide significance (GWS, P < 5E-8)
following that correction, 2) Impose a differential geno-
type quality filter, and 3) Set genotypes with quality
scores less than 20 to missing, then filter any site miss-
ing 30% or more of its genotypes (we refer to this filter
as “GQ20M30”). Application of this three-step filter sub-
stantially reduced UGAs (SNPs by 96.1%, indels by
97.6%, and overall by 97.2%). When applied to data for
an Age-Related Macular Degeneration (AMD) study
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without a detectable batch effect, these filters removed
only a small number of variants genome-wide (type I
error rate of 3%). An AMD candidate SNP analysis re-
vealed that these filters reduced power by 12.5%. Finally,
an independent Rheumatoid Arthritis (RA) dataset with
a different known source of detectable batch effect con-
firmed our proposed filters were effective (reduced
UGAs 89.8%).

Results
Descriptive statistics
We analyzed 1231 samples sequenced at approximately
30× average depth using Illumina based WGS over a
period of 5 years at various sequencing centers. Short
reads were mapped to the genome using BWA-MEM
[34] and variant calling was performed using GATK best
practices [35]. All samples were jointly genotyped with
GATK HaplotypeCaller. For each sample we computed
various summary metrics based on the GATK genotype
calls, genotype quality (GQ), read depth, and genomic
annotations e.g. coding/non-coding. The goal of this ini-
tial analysis was to identify metrics that enable detection
of batch effects.
The scatterplot of the first two eigenvectors generated

from PCA of key quality metrics (%1000 g, Ti/Tv in cod-
ing and non-coding regions, mean genotype quality, me-
dian read depth, and percent heterozygotes) clearly
revealed a batch effect (Fig. 1a). Similar to [36] we did
not observe this delineation in the standard GWAS PCA

plot generated using genotypes at 250,000 common
SNPs across the genome (Figure 1b). We defined a de-
tectable batch effect in this study to be the existence of
well-delineated groups determined by PCA of key qual-
ity metrics of sequencing data. We have implemented
the methods to compute these metrics in the R package
genotypeeval that can aid researchers in assessing the
potential for batch effects when combining datasets from
different sources.
This detectable batch effect could not solely be attrib-

uted to vendor, library preparation, sequencing chemis-
try, or size exclusion step (Additional file 2: Table S1) as
none of these variables solely explained the differences
between group 1 and group 2. It is likely that PCR-free
versus PCR library preparation and sequencing center
played a key role in creating this detectable batch effect,
similar to [36], as we found clear separation in PCA
visualizations of quality metrics by these variables
(Additional file 1: Figure S1). We found the two groups
were best explained using year of sequencing so desig-
nated samples sequenced in years 2010, 2011, and 2012
as group 1 (N = 918 samples) and samples sequenced in
years 2013 and 2014 as group 2 (N = 313 samples).
We next explored in detail the six quality metrics used

in our PCA decomposition (Table 1, Additional file 1:
Figure S2, Additional file 2: Table S2). While read depth
and GATK genotype quality (GQ) were comparable be-
tween the two groups (Table 1, Additional file 2: Table
S2), metrics based on transition-transversion ratio (Ti/Tv),

Fig. 1 A detectable batch effect was apparent in PCA of relevant quality metrics calculated using the gVCF (a). The standard GWAS PCA
performed using 250,000 common SNPs did not reveal this batch effect (b). Quality metrics included in the PCA in (a) include percent of variants
confirmed in 1000 genomes (phase 1, high confidence SNPs) [26], mean genotype quality, median read depth, transition transversion ratio in
non-coding regions, transition transversion ratio in coding regions, and percent heterozygotes. Group 1 here refers to samples sequenced in
2010–2012 and Group 2 to samples sequenced in 2013 and 2014
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heterozygous calls, and percent of variants confirmed in
1000 genomes (%1000 g) showed highly statistically sig-
nificant differences (Table 1, Additional file 2: Table S2).
To test the hypothesis that only particularly difficult-

to-sequence regions of the genome were subject to batch
effects, we computed our metrics after removing repeat-
masked regions [22] (53.02% of genome), segmental du-
plications [37] (13.65%), self-chain regions [37] (6.02%),
centromeres (2.01%), ENCODE blacklist [38] (0.39%), or
low-complexity regions (0.21%). PCA plots of our quality
metrics re-computed after filtering out the difficult to
assay regions still clearly revealed detectable batch ef-
fects (Additional file 1: Figure S3). We again examined
the metrics underlying the PCA plot by performing a
Wilcoxon-Rank Sum test comparing group 1 and group
2 post-filtering (Additional file 1: Figure S4, Additional
file 2: Table S2). Removing all repeat-masked regions
narrowed the difference in %1000 g between groups
from 4% to 1.8%, however %1000 g between groups was
still statistically significant (p-value <2E-16). Removing
smaller regions of the genome had only a modest effect
on %1000 g and affected both groups similarly as the dif-
ference in %1000 g between the two groups remained
between 3 and 4 %. Masking difficult regions had little
influence on the GQ. There was some impact on median
read depth – after filtering out GQ less than 90 the
median read depth metric was significantly different
between groups (p-value = 0.0004). Filtering did not
impact the Ti/Tv ratio metrics in non-coding or coding
regions. Differences between groups for the percent het-
erozygous metric improved after repeat masked regions
were removed (p-value 0.823) but remained unchanged
for all other filters. This analysis suggested that filtering
variants based only on excluding difficult regions was
not an effective strategy.

Mitigating batch effects via filtering
Large-scale genome-wide association studies using SNP
array based data often combined cases and controls ob-
tained from different sources [39–41] and this practice
continues with WGS based data [19, 20]. Rigorous QC
of SNP array based data reduced batch effects in this set-
ting. The sensitivity of WGS technology to differences in
library preparation, sequencing chemistry, etc. makes it
markedly susceptible to batch effects, however no
standard set of guidelines for QC of WGS has been
established. We therefore considered this challenging
scenario by performing a GWAS comparing 642 samples
from group 1 and 173 from group 2 with group as a
phenotype (Batch GWAS). These samples did not differ
in terms of their disease phenotype and at these sample
sizes no GWS associations were expected in this
analysis. To eliminate another potential source of batch
effect – an algorithmically induced effect from read
alignment and genotype calling, the short read data for
these samples were analyzed using the same bioinfor-
matic pipeline and the samples were jointly genotyped
using GATK HaplotypeCaller. In addition, QC steps
used in standard SNP-array GWAS were applied (see
Methods). Despite this, 1901 SNPs and 5469 indels
(Additional file 1: Figure S5) had a genome-wide signifi-
cant association. We refer to these as unconfirmed
genome-wide significant associations (UGAs). These
UGAs were distributed throughout the genome and
were not filtered by applying QC procedures such as
HWE, high missingness by site, or masking out difficult
to sequence regions. Genomic inflation (λGC) was high
for this study at 1.07 as was genomic inflation corrected
for small sample size (λ1000) at 1.25 (Additional file 1:
Figure S6). An analysis stratified by minor allele fre-
quency (MAF) of sites revealed genomic inflation was
highest for low frequency variants (MAF 1% to 5%,
λGC = 1.05, λ1000 = 1.19, Additional file 1: Figure S7).
Stratification by GC content of sites, calculated using a
25 base pair window surrounding the association,
showed genomic inflation was highest for low GC con-
tent (GC < = 20%, λGC = 1.14, λ1000 = 1.51, Additional
file 1: Figure S8).
The above scenario, while challenging, is likely to be

encountered frequently in practice. We studied a num-
ber of filters that removed these UGAs in an efficient
manner i.e. without eliminating too many of the variants
across the genome (Fig. 2, Additional file 2: Table S4,
S5). Linkage Disequilibrium (LD) can be used to correct
genotyping errors [42] where a genotype incompatible
with the surrounding haplotype is corrected. In the LD
filter, a variant was removed if the association test based
on the corrected genotypes obtained using Beagle [29]
was not GWS. This eliminated 1335 out of 1901 or
70.22% of UGA SNPs. Based on the observation that

Table 1 Descriptive metrics of 1231 whole genome sequences
by batch

Variable Mean (SD) Group 1 Group 2 p-valuea

N 918 313

GATK Genotype Quality 91.47 (2.72) 90.77 (3.57) NS

Median Read Depth 33.65 (4.69) 35.39 (6.81) NS

Ti/Tv in Non Coding Regions 2.01 (0.012) 1.95 (0.019) < 0.0001

Ti/Tv in Coding Regions 2.99 (0.053) 2.90 (0.032) < 0.0001

% Confirmed in 1000 Genomes 81 (0.87) 77 (0.76) < 0.0001

Percent Heterozygote 7.5 (0.48) 8.2 (0.45) < 0.0001

Group 1 and Group 2 refer to two different groups detected via a visualization
of eigenvectors from a PCA of metrics derived from the gVCF files
GATK Genome Analysis Toolkit, Ti/Tv transition transversion ratio, NS
not significant
The means of each variable are reported along with the standard deviation
in parenthesis
aDifferences between the two groups were assessed using the Wilcoxon Rank
Sum Test, two-sided alternative, with a Bonferroni adjustment for
multiple tests
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GQ distributions at UGAs were often substantially dif-
ferent between the two batches, a pattern not seen in
randomly selected sites that were not genome-wide sig-
nificant in the Batch GWAS (Fig. 3), we developed the
differential GQ filter (see Methods). Based on simulated
data (see Methods), the differential GQ filter had 80%
power with a GQ difference of 15 between groups and
sample size of 500 per group (Additional file 1: Figure
S9). After we applied the differential GQ filter, we had
566 SNP and 1439 indel UGAs. On its own, the differen-
tial GQ filter eliminated 1273 or 66.96% of UGA SNPs.
Finally we used the GQ20M30 filter where first, geno-
types with GATK GQ score less than 20 were declared
missing and then sites with missing genotype rate
greater than 30 % were removed. This left us with 74
UGA SNPs. Almost all UGA SNPs were removed with
more stringent filtering. A stringent GQ20M05 filter on
its own eliminated a comparable number of SNPs as our
proposed filtering (1816 SNPs or 95.53% of the SNPs fil-
tered, 85 SNPs remained). In combination with our pro-
posed filtering, the GQ20M05, LD, and differential GQ
filters left only 16 UGA SNPs. Similarly, a GQ20M10 fil-
ter in combination with our proposed filters left only 38
UGA SNPs (Additional file 2: Table S5).

While methods for calling indels from WGS data are
not as reliable as methods for calling SNPs [43], our ap-
proach filtered most UGA indels (elimination of 97.6%
of the 5469 UGA indels). The LD filter removed 4030
UGA indels (73.69%), the differential GQ filter removed
an additional 1044 or 72.55% of the remaining 1439
UGA indels, and the GQ20M30 filter removed an add-
itional 264 or 66.84% of the remaining 395 UGA indels
leaving us with 131 out of the original 5469 UGA indels
to assess. Again, the GQ20M05 filter on its own re-
moved a comparable number of UGA indels (5372 out
of 5469 or 98.23 %) and left 97 indels unfiltered. Using
the GQ20M05 filter in conjunction with the LD and
differential GQ filters left 19 UGA indels. The
GQ20M10 filter in combination with our filters left 97
UGA indels.
We also evaluated whether difficult to assess regions

(repeat masked, low complexity, centromeres, ENCODE
blacklist, segmental duplications and self chain regions)
added to the above-described filters. Most of these anno-
tations removed only a few sites after our proposed
filters were applied (see Additional file 2: Table S5). The
most effective annotation filter, repeat masking, removed
about half the remaining 74 UGAs.

Fig. 2 Filtering unconfirmed genome-wide significant associations (UGAs) from the Batch GWAS. Percent (and number, n) of the 7370 UGAs (1901
SNPs and 5469 indels) removed by each filter for (a) SNPs and (b) indels. In yellow are the filters we recommend and in blue are other filters we tested
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We saw modest improvement in the genomic inflation
factor from 1.07 (λ1000 = 1.25) to 1.06 (λ1000 = 1.22,
Additional file 1: Figure S6, Additional file 2: Table S3,
S6). We found the most substantial improvement in
genomic inflation factor when stratified by minor allele
frequency (MAF) for low frequency variants (MAF of 1
to 5%) from 1.07 (λ1000 = 1.24) to 1.05 (λ1000 = 1.19,
Additional file 2: Figure S10). A similar stratification by
GC content showed the most improvement for low GC
(GC < = 20%) where genomic inflation factor improved
from 1.17 (λ1000 = 1.63) to 1.14 (λ1000 = 1.51, Additional
file 2: Figure S11). The overall percent of UGAs filtered
was 97.2%. When stratified by GC content, we found the
highest percent of UGAs filtered (98.8%) for the sites
with lowest GC content (GC < = 0.2). When stratified
by minor allele frequency, the highest percent filtered
was for the low frequency variants (MAF of 1 to 5%,
98.5% filtered, Additional file 2: Table S6).
In the absence of batch effects, an effective filtering

strategy will eliminate a relatively small number of vari-
ants. We assessed the impact of our strategy by perform-
ing a genome-wide analysis comparing 1218 cases of
Age-related Macular Degeneration (AMD) and 250 con-
trols from the same batch. These samples had the same
vendor, chemistry, and were jointly genotyped in a single
run. We verified the absence of a batch effect by
performing a PCA on the quality metrics as described

previously and saw no detectable batch effect as the
samples were completely overlapping (Additional file 1:
Figure S12). In this AMD GWAS with no batch effect,
we had 220 significant associations (at variants in LD
with each other) that we refer to as confirmed associa-
tions [44] as these fell in the two well-known AMD loci
CFH and ARMS2-HTRA1 [42]. With our sample size
we had sufficient power to detect association (see power
calculation, Additional file 2: Table S7) at these two (out
of 19) previously known AMD loci. In addition, we de-
tected a GWS association at APOE as our controls were
enriched for Alzheimer’s cases. Alzheimer’s cases are
older on average and are unlikely to be carriers of vari-
ants for AMD. We had a handful of UGAs (16 SNPs, 31
indels). Most UGAs were in repeat masked regions (16
SNPs, 24 indels). Interestingly 15 of the 16 UGA SNPs
were eliminated by the differential GQ filter (Additional
file 2: Table S8). Genome-wide, we filtered a minimal
number of sites with our batch effects specific filters
(Fig. 4, Additional file 1: Figure S13, Additional file 2:
Table S8). The LD filter did not impact any sites. The
differential GQ filter removed 211,221 out of 8,636,121
variants or 2.4% of the variants. The GQ20M30 filter re-
moved 3.4% (304,410) of variants, the GQ20M10 filter re-
moved 5.5% (471,453) of variants, and the GQ20M05
removed 6.6% (575,431) of variants. Given that the
GQ20M10 filter removed 2% more of the variants

Fig. 3 Quantile-quantile plots revealed differences in genotype quality (GQ) distributions. Hom Ref, homozogyous reference (a,b); Het,
heterozygotes (c,d); Hom Alt, homozygous alternative (e,f); UGAs, sites with p-value <5E-8 in the Batch GWAS; Random, comparable set of sites
with p-value >5E-8 in the Batch GWAS. Note that in (d) most points overlap the single darkest point on the plot
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genome-wide than the GQ20M30 filter and it did not fil-
ter out a large proportion of additional UGAs, we recom-
mend the GQ20M30 filter. The genomic inflation factor
prior to filtering was 1.02 (λ1000 = 1.04) and post filtering
was 1.01 (λ1000 = 1.02), reflecting a slight improvement in
genomic inflation (Additional file 1: Figure S14).

We next performed an analysis to verify that in presence
of batch effects, our filtering strategy did not negatively
impact confirmed associations. To this end, we analyzed
1252 cases of Age-related Macular Degeneration (AMD)
and 678 controls with a detectable batch effect (Additional
file 1: Figure S15) at SNPs spanning 1 Mb around 19
known AMD loci [44] (Additional file 2: Table S7; see
Methods for power analysis). In the AMD candidate SNP
analysis with batch effect, we examined 19 confirmed
associations. Due to sample size, we lacked the power
(Additional file 2: Table S7) to detect a significant associ-
ation at the majority of these SNPs. We therefore exam-
ined if our method filtered any of the variants or changed
the p-values from significant to non-significant. The de-
tectable batch effect in the AMD candidate SNP analysis
was quite pronounced as it was also detected in the
PCA of the 250,000 common SNPs (Additional file 1:
Figure S15). After applying standard QC filters (see
Methods), we retained data on 16 out of the 19 known
loci. The stringent GQ20M05 filter removed SNPs from
12 of these known AMD loci (Table 2). However, the
GQ20M30 filter removed none, the LD filter changed
none of the p-values from significant to non-
significant or vice versa, and the differential GQ filter
removed only two of the known loci. These results in-
dicated that our filtering strategy specifically targeted
batch effects and as a result it retained more sites
overall and most confirmed associations. The more

Fig. 4 Performance of filters on an Age-Related Macular Degeneration (AMD)
GWAS with no batch effect. Percent (and number, n) of variants removed
genome-wide in an AMD GWAS with no batch effect where 8,636,121 unique
sites and 8,791,425 variants (SNPs and indels) were analyzed

Table 2 Retaining confirmed AMD associations in a candidate SNP analysis when batch is completely confounded with AMD status

CHR Positiona p-value Percent missing GQ20M05 GQ20M30 Diff GQ LD corrected p-value

1 196,710,325 0.002199 4.928 NF NF NF 0.002122

3 64,719,689 NS 5.027 F NF NF NS

3 99,762,695 NS 5.027 F NF NF NS

6 43,858,890 NS 6.57 F NF F NS

6 116,122,572 NS 6.471 F NF NF NS

8 23,225,458 NS 6.72 F NF NF NS

9 99,146,083 NS 5.475 F NF NF NS

10 122,454,932 1.60E-05 0.6969 NF NF NF 1.79E-05

13 31,245,188 NS 5.625 F NF NF NS

14 68,318,360 NS 5.226 F NF NF NS

15 58,396,268 NS 5.625 F NF NF NS

16 56,963,321 NS 3.833 NF NF F NS

19 6,718,376 NS 3.534 NF NF NF NS

19 44,919,689 2.30E-21b 6.67 F NF NF 3.16E-21

22 32,663,679 NS 6.521 F NF NF NS

22 38,080,269 NS 6.272 F NF NF NS

NF is not filtered, F is filtered, GQ20M05 filter, filter sites with more than 5% missingness after setting genotypes with GQ < 20 to missing; GQ20M30 filter, filter
sites with more than 30% missingness after setting genotypes with GQ < 20 to missing
Diff GQ, differential genotype quality filter, LD linkage disequilibrium, NS not significant in candidate SNP analysis at Bonferroni adjusted significance
level: 0.05/16 = 0.00312
aSites are reported in GRCh38 coordinates
bWe detect APOE because our controls are enriched for Alzheimer’s cases
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stringent GQ20M05 filter removed the majority of
these known AMD associations.
Finally, we analyzed another independent dataset with

a suspected large batch effect to evaluate the effective-
ness of our method. This was 30× WGS data Rheuma-
toid Arthritis cases sequenced at a single vendor and
jointly genotyped. A detectable batch effect was expected
for this data as a known change in sequencing chemistry
(Additional file 2: Table S1) was introduced between
2015 (Chemistry 1, n = 770) and 2016 (Chemistry 2,
n = 1528). Indeed, after performing PCA using our qual-
ity metrics as described above on these samples, we ob-
served a detectable batch effect explained by chemistry
(Additional file 1: Figure S16a) that was not evident in
the standard GWAS PCA of 250,000 common SNPs
(Additional file 1: Figure S16b). Performing a GWAS
with sequencing chemistry as the phenotype (RA Batch
GWAS), we observed 381,139 UGAs (46,841 SNPs and
334,298 indels), and a genomic inflation factor of 1.4
(λ1000 = 1.39, Additional file 1: Figure S17, Additional
file 2: Table S9).
We found in this dataset that again, there was no en-

richment of UGAs in difficult to sequence regions of the
genome, except in the case of repeat regions that con-
tained 83.3% of the UGA indels and 86.9% of the UGA
SNPs (Additional file 2: Table S10). The differential GQ
filter was the most effective filter in this dataset, remov-
ing 87.3% of UGAs overall (86.3% of SNPs and 87.4% of
indels, Additional file 2: Table S11). The combination of
LD, GQ20M30, and Differential GQ filter removed
89.8% of UGAs overall (90.2% of SNPs and 89.8% of
indels). We saw a drop in λGC from 1.4 to 1.2 (λ1000
from 1.39 to 1.2, Additional file 1: Figure S17, Additional
file 2: Table S9).

Discussion
While sequencing costs are decreasing, many thousands
of samples are necessary to have sufficient power to
identify novel variants associated with common complex
diseases [45]. In order to collect enough cases for
diseases, multiple groups often work collaboratively by
contributing samples to a consortium. In order to
analyze these cases an even greater number of controls
are desired [46]. Thus the need to combine samples that
have been processed independently is clear, as is the
unavoidable introduction of batch effects. These batch
effects are subtle and simple filtering e.g. removing vari-
ants in “difficult regions” is ineffective. We found that
changes in sequencing chemistry related to PCR versus
PCR-free workflows strongly contributed to the detect-
able batch effects in both the Batch GWAS and the RA
Batch GWAS.
Our R package, genotypeeval can process genotypes

stored in gVCF (see Methods) or VCF files [26] and

computes 46 metrics selected to assess the quality of
WGS data. We ran this package in parallel in an hour
on a single thread using 40 Gb of memory per sample.
Our initial efforts to perform association analyses in

the presence of batch effects revolved around masking
difficult to sequence regions, however we found this ap-
proach ineffective. In our Batch GWAS we did not see
enrichment for UGAs in the repeat regions. This obser-
vation led us to develop and validate site-specific filters
that target UGAs that arise from batch effects. We pur-
sued the differential GQ filter because we observed in
multiple datasets a systematic shift in GQ when sequen-
cing chemistries changed. The LD filter was effective be-
cause the factors that led to batch effects are largely
expected to be independent of the local LD structure.
Thus the genotypes at UGA variants were not compat-
ible with the surrounding haplotypes and these geno-
types were corrected. The GQ20M30 filter addressed a
need for a minimal quality threshold on the site. While
we explored increasing the stringency on this filter, we
found 30% missingness to be a reasonable tradeoff
between retaining sites and removing batch effects.
Therefore we recommend, in addition to standard
GWAS QC, the LD filter, differential GQ filter, and the
GQ20M30 filter while bearing in mind that these filters
will reduce power to detect confirmed associations. We
have also found that these filters may not be effective in
the case of a severe batch effect – in this instance it may
be necessary to adapt a more stringent filter such as
GQ20M05, which will result in further reduction of
power.
Our method to eliminate spurious calls can be applied

when case and control status is completely confounded
with batch. However, in this report we have focused on
common variants. Effective strategies for rare variants
still need to be addressed, though new algorithmic ap-
proaches are being developed [21]. We describe here an
approach for minimizing batch effects when analyzing
data from Illumina short-read sequencing, processed
using BWA-MEM and GATK HaplotypeCaller. Further
work is needed to assess the best way to cope with batch
effects when using other sequencing technologies and
variant calling pipelines. Another limitation of our inves-
tigation was our inability to examine read depth (see
Methods) at a given site as this has been found to be a
key contributor to artifacts in variant calling [47]. Our
work focused on real data as a large number of factors
contribute to batch effects in WGS data and any as-
sumptions made to simulate batch effect data will likely
be inadequate and at times inappropriate when working
with real datasets. This was also a limitation of our in-
vestigation as we used only a single test dataset (the
Batch GWAS) to develop our methods and two inde-
pendent methods to validate on – the RA Batch GWAS
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for sensitivity and the AMD No Batch GWAS for speci-
ficity. Additionally, while the total sample size in our
Batch GWAS was 1231 samples, the uneven distribution
of samples (918 in Group 1 and 313 in Group 2) means
we were limited in our power to detect as many associa-
tions due to batch effects than if our samples were
evenly distributed between groups.
A final limitation of our methodology is that we have

focused mostly on filtering out GWS associations and
therefore we were much more effective in filtering in the
genome-wide significant range of p-values than overall.
This was reflected in the small gains in genomic infla-
tion factors post filtering (eg in the Batch GWAS from
1.07 to 1.06) despite the large percent of UGAs filtered
(97.2% in the Batch GWAS). We chose to focus on
GWS unconfirmed associations since practically scien-
tists want to prioritize these for further research and
validation.

Conclusions
We showed that the quality metrics we developed can
determine whether a batch effect exists within a dataset
and released software that allows researchers to quickly
assess the quality of their sequencing data. After testing
existing WGS filters, we recommended our filtering
strategy which combines (1) an LD filter, (2) differential
GQ filter, and (3) GQ20M30 filter. This combination of
filters removed 97.2% of the unconfirmed genome-wide
significant associations in the Batch GWAS and 89.8%
in the RA Batch GWAS. An AMD GWAS with no
batch effect featured a Type I error rate of 3% and an
AMD candidate SNP analysis revealed a reduction in
power of 12.5% as 2 out of 16 confirmed AMD associa-
tions were filtered.
Batch effects in WGS data are not well understood

and perhaps because of this, we were not able to find an
existing method or develop a novel method that re-
moved all sites impacted by batch effects without
impacting the power to detect true associations. While
we focused on creating targeted filters that removed a
small percent of the genome, in practice these need to
be used in conjunction with standard quality control
measures (for example removing sites out of Hardy-
Weinberg equilibrium), which can result in very strin-
gent filtering. In the case of a severe batch effect, such
as the chemistry change present in the RA Batch
GWAS, more stringent filtering was necessary even
after applying standard quality control and our pro-
posed filters as almost 40,000 UGAs remained after
filtering. In order to fully address batch effects, disen-
tangling the impact of changes in sequencing chemistry
and bioinformatics processing on association analysis
will be necessary.

Batch effects will arise as independent groups attempt
to combine sequencing data generated and processed
from different sources – this collaboration is necessary
particularly to attain power to detect new disease-
associated variants. Large-scale resources are spent by
research, industry, and government organizations creat-
ing databases that cannot easily be merged. Our experi-
ments and tools will help researchers integrate this rich
mine of genetic data.

Methods
Samples and sequencing
Samples were collected under appropriate consent
approved by the Western Institutional Review Board
through multiple ongoing collaborations. For all samples
DNA was extracted from whole blood. The size exclu-
sion step was performed using gel or SPRI and library
preparation methods varied between different Illumina
techniques: PCR-based, PCR-free, and PCR-plus. Thus
multiple parameters varied between years and vendors
and no single parameter was found to correspond to the
observed batch effect in our samples. Sequencing was
conducted on Illumina X 10 and HiSeq machines
between the years of 2010 through 2016 using Illumina,
Beijing Genomics Institute (BGI), DeCODE, Broad
Institute (Boston), and Human Longevity Inc. (HLI) as
sequencing vendors (Additional file 2: Table S1). All se-
quencing involved generating paired-end reads with the
target average genome coverage of 30×.
All samples were processed using the same sequence

alignment and variant calling pipeline. Short read data
were aligned to GRCh38 using BWA-MEM [34] and the
resulting alignments (bam files) were processed using
GATK best practices [35] to first generate per-sample
genome-wide genotype calls (gVCF files). A single multi-
sample VCF was then created by jointly genotyping all
gVCF files using GATK HaplotypeCaller. The data was
analyzed using GATK version 3.4 which did not accurately re-
port read depth in the final VCF due to a local reassembly
step (see http://gatkforums.broadinstitute.org/gatk/discussion/
comment/36686#Comment_36686). During variant calling
GATK HaplotypeCaller performed a local de-novo as-
sembly of the reads. Due to this, the effective read
depth at the time of variant calling could be different
than the read depth in the original alignments and
the read depths in the original alignments were re-
ported in the final VCF.
We developed a software package: genotypeeval freely

available on Bioconductor as part of the R Project [48]
to compute 46 metrics using gVCF files, including per-
cent confirmed in 1000 genomes, Ti/Tv in coding and
non-coding regions, number of heterozygous calls in
self-chain regions, etc. Metrics identified as relevant to
batch effects qwew described in this manuscript.
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Masking difficult to sequence regions
Difficult to sequence regions were assessed using the fol-
lowing annotation tracks: 1. repeat-masked regions [22],
2. low-complexity regions within the repeat-masked re-
gions, 3. centromeres, 4. the ENCODE blacklist, [38] 5.
self-chain regions from UCSC [49] and 6. segmental du-
plications from UCSC [50]. Where appropriate, tracks
with coordinates in the older build hg19, were lifted over
to GRCh38 using the liftover tool in the R package,
rtracklayer [51].

Power calculation
The 19 known AMD SNPs sites from [44] were evalu-
ated to determine which SNPs we had sufficient power
in our GWAS experiments to detect. The odds ratios
and allele frequencies were obtained from [44] and eval-
uated for our AMD GWAS with no batch effect (1218
cases and 250 controls) as well as the AMD candidate
SNP analysis with batch effect (1252 cases and 678
controls). Power calculations were done using CaTS [52]
assuming an additive model and genome-wide signifi-
cance level of 5xE-8.

GWAS analyses
PLINK 1.9 [53] was used to run GWAS analysis after
multi-allelic sites were removed. QC steps included re-
moving sites with missing genotype rate greater than
50% and removing samples with greater than 20% miss-
ing genotype rate. Low minor allele frequency sites (less
than 1%) were removed and sites out of Hardy-
Weinberg equilibrium in controls (or group 1) alone
were removed (p-value <1xE-5). Close relatives and indi-
viduals related to multiple individuals (potential sample
contamination) were removed. Association analysis was
performed using logistic regression of phenotype on
additively coded genotypes, and the first five eigen-
vectors from PCA analysis [54] were included as co-
variates to correct for population structure. Sites with
p-value <5xE-8 were considered genome-wide signifi-
cant (GWS).
The Batch GWAS analysis used 815 subjects in total

(642 in Batch 1 and 173 in Batch 2). GWAS as outlined
above was performed and any GWS association was
considered an unconfirmed genome-wide significant as-
sociation (UGA) – this assumption was made because of
the relatively small sample size and because there were
no known confirmed associations for the phenotypes in-
cluded in the sample. We identified 1901 UGA SNPs
and 5469 UGA indels for a total of 7370 UGAs.

Filters
GQ20Mx filter
Genotype calls with genotype quality score computed by
GATK HaplotypeCaller less than 20 were set to missing.

With the GQ20Mx filter, sites with greater than x%
missing genotype rate were filtered. For example, in the
case of the GQ20M10 filter, sites with greater than 10%
missing genotype rate were filtered.

LD based genotype correction
The jointly genotyped VCF file generated by GATK was
analyzed using Beagle Version 4.1 [29], to obtain LD
corrected genotypes. The GWAS analysis as outlined
previously was performed using the LD corrected VCF
file. For example, a genotype incorrectly identified as a
heterozygous is unlikely to be compatible with the sur-
rounding haplotype block and will likely be corrected to
a homozygous genotype prior to analysis. Therefore sites
where genotypes were disproportionately and incorrectly
called heterozygotes in a single batch will no longer be
identified as GWS. Sites that were no longer GWS after
using LD-corrected genotypes in the association test
were filtered.

Differential GQ filter
Genotype qualities were dichotomized at GQ60. A chi
square test with the variables batch (for example in the
Batch GWAS, group 1 and group 2) and dichotomized
GQ60 was used to test for differential genotype quality
with a p-value cutoff of 1E-4. Homozygous reference,
heterozygote, and alternative genotypes were tested in-
dependently at a given site and the site filtered if any of
the three tests were significant.
Simulations to assess power were performed by drawing

group 1 genotype quality scores from a continuous uni-
form distribution (X1 ~ Uniform(0,99)) and group 2 geno-
type quality scores from a continuous uniform distribution
with addednormalnoise (X2~Uniform(0,99)+Normal(mu,
sigma)). Sigma was tested at 1, 5, and 10. Mu varied from
0 to 20 and sample size was tested at 250, 500, and 1000.
The simulations were repeated 1000 times each.

Additional files

Additional file 1: Supplemental Figs. S1-S17. (PDF 4953 kb)

Additional file 2: Supplemental Tables S1-S11. (PDF 112 kb)

Additional file 3: Sample level summary statistics and annotations
calculated by genotypeeval. (CSV 102 kb)
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